A minimax search algorithm for CDHMM based robust continuous speech recognition
نویسندگان
چکیده
In this paper, we propose a novel implementation of a minimax decision rule for continuous density hidden Markov model based robust speech recognition. By combining the idea of the minimax decision rule with a normal Viterbi search, we derive a recursive minimax search algorithm, where the minimax decision rule is repetitively applied to determine the partial paths during the search procedure. Because of its intrinsic nature of a recursive search, the proposed method can be easily extended to perform continuos speech recognition. Experimental results on Japanese isolated digits and TIDIGITS, where the mismatch between training and testing conditions is caused by additive white Gaussian noise, show the viability and e ciency of the proposed minimax search algorithm.
منابع مشابه
A minimax search algorithm for robust continuous speech recognition
In this paper, we propose a novel implementation of a minimax decision rule for continuous density hidden Markovmodel-based robust speech recognition. By combining the idea of the minimax decision rule with a normal Viterbi search, we derive a recursive minimax search algorithm, where the minimax decision rule is repetitively applied to determine the partial paths during the search procedure. B...
متن کاملImproving Viterbi Bayesian predictive classification via sequential Bayesian learning in robust speech recognition
In this paper, we extend our previously proposed Viterbi Bayesian predictive classification (VBPC) algorithm to accommodate a new class of prior probability density function (pdf) for continuous density hidden Markov model (CDHMM) based robust speech recognition. The initial prior pdf of CDHMM is assumed to be a finite mixture of natural conjugate prior pdf’s of its complete-data density. With ...
متن کاملSolving Large Margin Est via Semidefinite Pr
In this paper, we propose to use a new optimization method, i.e., semidefinite programming (SDP), to solve large margin estimation (LME) problem of continuous density hidden Markov models (CDHMM) for speech recognition. First of all, we introduce a new constraint into the LME to guarantee the boundedness of the margin of CDHMM. Secondly, we show that the LME problem under this new constraint ca...
متن کاملEfficient ML training of CDHMM parameters based on prior evolution, posterior intervention and feedback
We present an efficient maximum likelihood (ML) training procedure for Gaussian mixture continuous density hidden Markov model (CDHMM) parameters. This procedure is proposed using the concept of approximate prior evolution, posterior intervention and feedback (PEPIF). In a series of experiments for training CDHMMs for a continuous Mandarin Chinese speech recognition task, the new PEPIF procedur...
متن کاملتخمین سریع ضرایب پیچش در هنجارسازی طول مجرای صوتی با استفاده از امتیاز به دست آمده از مدلسازی تشخیص جنسیت
The performance of automatic speech recognition (ASR) systems is adversely affected by the variations in speakers, audio channels and environmental conditions. Making these systems robust to these variations is still a big challenge. One of the main sources of variations in the speakers is the differences between their Vocal Tract Length (VTL). Vocal Tract Length Normalization (VTLN) is an effe...
متن کامل